The problem requires finding the Kth smallest element in a Binary Search Tree
(BST).
Since a BST's
in-order traversal
yields
elements in ascending order, we can use this property to solve the problem efficiently.
We perform an
in-order traversal
and
keep a
counter to track
the number of nodes visited.
When the counter
equals k
, we have found
the Kth smallest element.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode() : val(0), left(nullptr), right(nullptr) {} * TreeNode(int x) : val(x), left(nullptr), right(nullptr) {} * TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {} * }; */ class Solution { public: int ans; int cnt; // InOrder Traversal of the Tree. void inOrder(TreeNode *root, int k){ if(root == NULL) return ; inOrder(root->left,k); cnt++; if(cnt==k) ans = root->val; inOrder(root->right,k); } int kthSmallest(TreeNode* root, int k) { inOrder(root,k); return ans; } };
The algorithm performs an in-order traversal of the tree, visiting each node once, making it linear in time complexity, where n is the number of nodes in the tree.
The algorithm uses recursion, which consumes stack space proportional to the height of the tree. In the worst case, this is O(n) for a skewed tree.