To find the minimum window substring in 's' that contains all characters of 't', we use a
sliding window approach. We maintain a
frequency hash
for
characters in 't' and
track
the number of
characters still
needed
in the current window. As we
expand
the window by
moving the
end pointer
,
we
decrement
the
frequency of characters in the hash. When all required characters are included, we try to
shrink
the window from
the
start
to find the
smallest valid window. This ensures we efficiently find the minimum window containing all characters
of 't'.
class Solution { public: string minWindow(string s, string t) { int tHash[130]={0}; for(int i=0;i<t.size();i++){ char ch = t[i]; tHash[ch]++; } int start = 0; int end = 0; int elementsNeedsToBeAddedInWindow = t.size(); int mnLength = INT_MAX; int startingIndex = 0; bool windowExist = false; string result; while(end<s.size()){ char ch = s[end]; tHash[ch]--; if(tHash[ch]>=0) elementsNeedsToBeAddedInWindow--; while(elementsNeedsToBeAddedInWindow==0){ windowExist = true; int lengthOfSubstring = end-start+1; if(lengthOfSubstring<mnLength){ mnLength = lengthOfSubstring; startingIndex = start; } char ch1 = s[start]; tHash[ch1]++; // -1 --> 0 if(tHash[ch1]>0){ elementsNeedsToBeAddedInWindow++; } start++; } end++; } if(windowExist) return s.substr(startingIndex,mnLength); else return ""; } };
The algorithm iterates through 's'
and 't'
once, where 'n'
is
the length of
's'
and
'm'
is the length
of
't'
.
The algorithm uses a fixed-size frequency hash, ensuring constant space usage.